7. C. Drummondil: H. Drummondii Torr. \& Gray.
8. C. Texana: H. Texana Fisher.
9. C. virgata: H. microphylla Torr. (Specific name preoccupied under Casalpinia.)
10. C. intricata: H. glabra Fisher, var. intricata (Brandg.) Fisher.
Var. Glabra: H. microphylla Torr., var. glabra (nomen nudum) Watson. H. glabra Fisher.
11. C. caudata: H. caudata Gray.
12. C. brachycarpa: H. brachycarpa Gray.
13. C. multijuga: H. multijuga Watson.
14. C. melanosticta: H. melanosticta (Schauer) Gray. Var. Parryi: H. melanosticta, var. Parryi Fisher.
Var. Gregail: H. melanosticta, var. Greggiii Fisher.
15. C. Canescens: H. canescens Fisher.
16. C. Jamesil: H. Famesii Torr. \& Gray.
17. C. Fruticosa: H. fruticosa Watson.

There also may be added the following South American form, from U. S. of Colombia, that has come under my observation, and which may possibly extend to the isthmus:
18. C. viscosa: H. viscosa Hook. \& Arn.

Indiana University, Bloomington, Ind.

The tendrils of Passiflora caerulea.

D. T. MAC DOUGAL.

II. External phenomena of irritability and coiling.

In the preceding paper ${ }^{1}$ attention was called to the more apparent features of the development, minute structure and arrangement of the tissues, with a view to determining their ralue as factors in the coiling movements consequent upon imitation of the lower surface during the period of normal ac-

[^0]months January-April, and September-December, 1892. The observations were extended to include P. Pfordti of the gardeners. The temperature varied between 16 and $35^{\circ} \mathrm{C}$

It is of interest to note that both of these forms exhibited marked nutation of the terminal internodes of the stem, since in the species examined by Darwin such was found to be the case only in P. gracilis. ${ }^{3}$

This circumnutation of the tendril and the internode bearing it begins when both are quite rudimentary(fig. 3). These movements with the individual movements of the yet immature internodes below combine to sweep the tendril through a large space during its period of greatest activity, thereby greatly increasing the probability of coming in contact with some object which may serve as a support. While this correlation is an obvious advantage, yet it must be borne in mind that nearly half the time the tendril is waving through the air with its non-sensitive surface forward, and hence could not grasp a support should it meet one. It is not necessary to suppose however, that the tendril has reached the stage of the highos possible usefulness to the plant.

When the moving tendril, after it has attained a length of 4 or 5^{em}, brings its sensitive surface in contact with an objat which acts as a stimulus, a curve is formed at the point of contact in a time varying from 30 seconds to 2 minutes. this happen in the early stages of growth, the curve is slightr the tissues are weak, and the tendril is dragged past or awid) from the support. Should the tendril have reached an ap proximately mature stage, the curve will be formed mote rapidly, and the strengthened tissues hold the hook form give to it, and curve still further around the object. If we strils a rigid pole with a rattan cane, the curve formed will be sim ilar to that of the young tendril, and if we strike the pors with a rope one end swinging free, the curve of the maturt tendril will be obtained.

In this connection it was thought important to note to whll extent the tendril would respond to various kinds of stimp Drops of water at ordinary temperature thrown either get ly or forcefully against the tendrils produced no curvaturb The contact of the ordinary metallic salts acted similarly. Bo if the tendril were submerged in these liquids the indace osmotic action quickly caused curves. ${ }^{4}$

The contact of mercury was without effect, ${ }^{5}$ but if the meniscus of a vessel of mercury be brought forcibly against the tendril, distinct curvatures resulted.
With solids, however, it was found that it would respond to a contact as light as that made by a piece of no. 40 cotton thread, $I^{m m}$ in length. The results of contacts from objects of glass, woods, metals, stones, fibres, parts of its own and other plants were practically alike, and the rapidity and amount of response depended altogether upon the force of impact and roughness of the surface rather than the composition of the body. No extended experiments were made with electrical stimuli, but no results were obtained by the use of the current from a Leclanché cell.
If the temperature of the water in the previous experiment were raised to $40^{\circ} \mathrm{C}$. curves were produced; or if a small rod heated to $50^{\circ} \mathrm{C}$. were held near the tendril like results followed. If the water were in the form of snow or ice no curvatures could be obtained, although the hard crystals must have given a very distinct mechanical contact. The results from these high and low temperature stimuli are doubtless due to their direct influence on the osmotic action of the cells, since in the experiment with the heated rod the tendril can be made to curve backward.
Darwin notes that the tendrils of Bryonia dioica, and also Eclinnocystis lobata, would not form curves when mutually interlocked. His generalizations can not be extended to the species of Passiflora examined. If a small portion of an excised tendril be placed on an active tendril a temporary curve results, and it was noticed that two tendrils brought against each other almost always formed curves, and the fact that they did not always interlock was due es, and the fact that were in rapid motion interlock was due to the fact that both dragged past. Shot in opposite directions, and were quickly other may coil Should any of the tendrils be fixed taut the times (fig. 2, c). In around it as has been demonstrated numerous coils. The . In one case five tendrils formed a mass of mutual to a mass in tendril has also been noted to grasp and crush inone from its own axil. be of any use to axil. Such action could not even remotely Berne to the plant, and in view of these facts it is

${ }^{504} L_{4} L_{4 r}$. Pfeffer: Untersuchunge
impossible to ascribe to them any great degree of selectir intelligence.

The tendrils can coil in such manner as to fasten to almed any object except a polished plane surface. If the object be a cord or a twig the free end coils around it as in the ropeelperiment, while the portion between the plant and the sup port is thrown into spiral coils. If a board whose width 1 nearly equal the length of the tendril be placed in contait with it, the tip will hook around the farther edge while a kn spirals are formed which lie flat on the surface. Thus it nil be seen that the size of the object which may be graspedi limited only by the length of the tendril, while it can gry an object however small since the tendril can coil so cloct as to obliterate the central enclosed space. This adaptate was still further shown by the manner in which it fastenstote crevices of a brick wall. In doing this the tendril tip findsiz way into the small surface cavities of the bricks and fore coils, filling up the cavity in such manner that it can not x . dislodged without rupturing the tissues.

Tendrils thrust into smooth glass tubes 2^{mm} in diamder formed curves throughout their entire length, while the flexible tip formed a solid spiral completely filling up the bart of the tube. It required a force of $10-20^{54}$ to dislodge sutil tendrils. Still others placed in tubes scarcely larger the themselves could not be withdrawn without breaking or crus ing the tube.

If a tendril during its period of irritability does not os in contact with any object reacting as a stimulus, it will completing its growth, slowly form into a continuous rights left handed irregular spiral.

Should the tendril grasp some object with a portion of tip, the portion in contact with the object grows slighti) length and by its manner of curvature forces its tip farte around the object if it is not too large, and at the same increases the thickness of the part in contact, as a reactor result of the pressure. The tendril may grasp an object ${ }^{2}$ time during its period of activity, but the part between support and base will not form spirals until it has attaines maturity, which is from a few hours to two days later. the immediate cause of coiling is the inequality of lengt the upper and lower sides of the tendril. How this incer? ity is brought about need not concern us at this point. tendency to curve were strongest at the tip and decreased
zero at the basal portion, the free tendril would coil in the form of a helix and no torsions would result. The strength of the curving power, and of the tendril, are so proportioned that the resulting spirals are all $0.3^{\text {en }}$ to 0.5^{cm} in diameter and can not lie concentrically, but must form side by side. This means, of course, that torsions are set up. In the free coiling tendril it can revolve and relieve these torsions. In the tendril fastened at both ends, however, this is impossible and if the spirals were all in one direction the torsion would be great enough to work serious injury. The fastened tendril begins to form spirals either near the base or the support on reaching maturity. This part coiling with its spirals all in one direction of course twists the contiguous straight part of the tendril. This twisting continues until the induced torsion is stronger than the coiling force of the first part, and then the twisted part forms coils in the opposite direction in obedience to its own torsion. The portion in which the two forces are equalized will be nearly straight. The remainder of the uncoiled tendril is acted upon similarly until it is coiled in two to seven portions separated by straight parts. The number of the portions will be determined by the relative value of the coiling force and the resistance of the tendril. While the turns in either direction are invariably equal. The time elapsing between fastening to a support and the formation of spisult of irritability, busion that the latter is not a direct reWhen a straight but rather a function of the mature tendril. forms spirals in the tendril fastens to a support and afterward it must tend to the portion between its base and the support, dril has at the same these two points nearer, unless the tenthe spirals, such same time a growth in length to compensate for Penhallow,s Extended found to be the case in Cucurbita by if the distance betweed observations were made to determine the plant and between the base of the tendril at the body of That force was exerted in were brought any nearer, and if so diclosed the fact that in so doing. Repeated measurements Brar its base foward the tendril drew the portion of the vine auch as one-third its the support a distance of I to 6^{cm} or as Weights of thrd its length.
core three grams upward were suspended from the

[^1]tips of tendrils by means of loops of soft cotton cord to de. termine their lifting strength. With weights less than sif grams many close spirals were formed lifting the weighs several centimeters. With the increase of weight, more opet spirals resulted. Still higher only weak curves were madel while tendrils weighted with twenty grams were held entirely straight, and this may be safely taken as the limit of the lift. ing power (fig. 3). These effects, however, are modified byeffect of the traction of the weights on the tendril. ${ }^{7}$

The results obtained by the dynamometers are doubtless d greater value. Of these, three types were used. One form consisted of a spiral spring of brass suspended from a hook if an upright wooden standard after the manner of the Joly gratity balance. The tendril is fastened to the lower end of the spring and the amount of tension determined by an arbitrat scale. The second form was the lever dynamometer which is in general use and needs no description here. ${ }^{8}$

The most satisfactory results, however, were obtained frod the use of Vöchting's dynamometer. ${ }^{9}$ This machine is de signed for use with a clinostat, but can be used in determire ing tensions of all kinds. It is simple, convenient and relir ble. (See plate X.) It consists essentially of two compas arms of metal 10^{cm} and 6^{cm} in length, separated by a spith (s). The long arm (c) carries the spring and the short poits er (d) and is curved back a short distance below the pointo (l) and tapers uniformly throughout to the lower end which? a sharpened point. The shorter arm (b) joins the longt arm by an ordinary hinge joint. This arm tapers to lower end, terminating in a small hook (e), and carries arc scale (f) which slides under the pointer. The scale marked into fifteen divisions so arranged that a pull the hook (e) will be indicated in grams by the pointer. spring (s) is made of gold for greater reliability, and is 例 ened to the long arm by two small screws. The other of slides freely along the shorter arm as the pressure varies. the plate the machine is shown registering a tension of 2 ? of a tendril of Passiflora Pfordti.

The plant at the base of the tendril is attached by cords? an iron post (n) driven firmly in a board. The long arml the dynamometer is driven into the board in such position thy

[^2]${ }^{8}$ Pfeffer: Die periodischen Bewegungen der Blattorgane, 1875.
${ }^{9}$ Berichte der. deutchen bot. Gesellschaft, vi. 279. (I888).
the straight tendril will pass the curved portion without touching, and catch the hooked end of the short arm with its curved tip. Any tension set up is indicated directly on the scale. The tendrils tested with this type of dynamometer exhibited tensions of 3 to 10^{mm}.
The function of the tendril is doubtless to pull the growing shoot up toward the light and fix it to a support. It occupies a supra-axillary position and the internodes are from 3 to 10^{cm} in length. The work of each tendril as it in succession comes tomaturity is to lift its internode and the undeveloped internodes of the growing shoot. On testing it was found that this portion of the plant never reached a weight of I^{gm}, and the amount to be lifted by two adjoining tendrils rarely exceeds 1.5^{gm}. Thus it will be seen that each tendril is capable of doing the work of many. The value of this provision is apparent when it is known that not all of the tendrils are able to reach supports, others are injured or rendered incapable of grasping objects by the force of the winds, and that the firmness with which a plant is held has a direct influence on its growth.
The coiling of the attached tendrils and the subsequent strengthening of their tissues give them the elasticity of springs and enable them to withstand severe shocks and Strains without injury. The force required to tear a plant from its supports must first straighten the coils and then ruptore the tendril. No measurements were made of the tensile strength, but it was found that normally coiled and mature tendrils required a force of 350 to $750^{5 \mathrm{~mm}}$-the weight of several feet of the plant body-to break them, so that the probability of a vine, firmly anchored by dozens of these tendrils, being torn from its fastenings, is very remote.
Briefly summarized, the tendrils and terminal internodes of the two species of Passiflora examined show circumnutation. The tendrils are sensitive to contact of solids, and liquids at a ${ }^{\text {temperature of }} 40^{\circ} \mathrm{C}$., and are non-sensitive to liquids at orindury and low temperatures, unless they are so applied as to Coiling arect osmotic action, and to slight electrical stimuli. tion of spiral an object takes place on contact, while formaspirals exerts takes place on maturity. The formation of the Ing the tendril tension of three to twenty grams, shorten$a_{a n}$ withstand one third of its length, and a mature tendril Purdue Experimen of 350 to 750^{gm}.
urdue Experiment Station, La Fayette, Indiana.

Explanation of Plate X.
Figure 1. Passiflora Pfordti; Vöchting's dynamometer attached totede B, short arm, C, long arm, D, pointer, E, hook, F, scale, L, curve of long arm spring, N , iron post.

Figure 2. Passiflora carulea; A, tendril carrying weight of nineteen gnas slightly curved near base, B, tendril carıying weight of nine grams, spiralod tip, c, tendril grasping tendril в, which it has pulled from the perpendicole

Figure 3. Passiffora carulea; A, growing tip of shoot with undevelopal to drils, B , tendril slightly sensitive and nutating, C , tendril capable of coilint tendril nearly mature-in the period of highest activity.

The limitation of the term "spore."

CONWAY MAC MILLAN.

Every one who has attempted to define his terms of dwi use has probably met with the same experience that the writer might describe. Words, easily definable at first, ix come more and more vague as their implication is moref understood. In view of the scantiness of botanical temis ology, although it is one of the richest of scientific vocatis laries, there is great need that the import of common teme should be examined with much care to avoid the errost over-, or under-definition. Every work that appears preses some new and generally barbarous verbal technicalities tis tend rather to cloud than to clarify perception, For exam? in that most excellent little compendium on the cryptogas plants, lately published from Bennett and Murray, one grieved to find that the word "sperm," properly employd plant, as in animal, biology, is diverted to a peculiatly necessary meaning and is taken as a synonym of the pritr "fertilized egg," when it would have been much preferable? unify the terminology by calling the antherozoid of the p a "sperm," and thus recognizing what it is necessary to cognize as fully as may be that the animal and the plant? alike, for the higher groups of organisms, in producing s cells and that these cells are, even in their intimate mitotic nomena of development, strictly analogous, if not absollif homologous.

At present I wish to speak in particular about the the word "spore" in botanical writing, and it is not intec to offer any historical or highly exhaustive discussion at time, but simply to show how under the general term are a number of ideas that clear thinking demands shout kept separate. In the first place it may be noted that

[^0]:
 Sis indebled to Dr. J. C. Artin,
 Te of his srivate green-house, laborth for his kindness in placing at my disposal
 6e clis private library, together witory and apparatus, and in giving me the
 at 1 utions to Miss Katherine E . much valuable advice. I am also un-

[^1]: Record of Science, II. 242. Oct. 1886.

[^2]: ${ }^{7}$ W. Pfeffer: Ber. Verhandl. K. Sachs. Gesell. Wiss. v. 638-643. (1892)

